50Ω DWDM Medium Power L-Band HTS

- L-Band HTS (700-2450 MHz)
- Up to 600 km systems available
- 1 to 96 channels per fiber
- Ideal for Ka-Band rain fade diversity
- 5 mW Laser
- Standard 5-year warranty

ViaLiteHD DWDM L-Band HTS RF over fiber links use dense wavelength division multiplexer (DWDM) lasers and have been designed for the satellite industry to transport RF signals over long distances, enabling Ka-Band diversity or remote location of antennas up to 600 kms away. Due to the very wide dynamic range, the same link can be used in both the transmit or receive paths. This dynamic range allows High Throughput Satellite (HTS) transponder bandwidths of $500 \mathrm{MHz}, 800 \mathrm{MHz}$ or even 1500 MHz to be transported, even over long distances. A full suite of DWDM accessories is available as well as system design, commissioning expertise and system setup.

The chassis cards are available with the ViaLiteHD blind mate option, which allows all cables to be connected at the rear of the chassis when installed. It also allows configuration changes to be completed without disturbing the connections and very fast changeover of cards; enabling five 9 s reliability.

Options include:

- $\quad 50 \Omega$ electrical connectors: SMA and MCX
- Optical connectors: SC/APC, LC/APC, FC/APC and E2000/APC
- Test ports on Tx and Rx modules
- Built-in BiasT for LNB powering through RF connection
- LNB control circuit with 13/18 VDC \& 22 kHz tone
- Blind mate connectivity (SC/APC and SMA)

Applications

- Ka-Band diversity rain-fade application
- Fixed satcom earth stations and teleports
- Gateway reduction within a satellite footprint
- Government installations
- Remote monitoring stations
- Leased fiber reduction

Formats
3U Chassis
1 U Chassis
Yellow OEM
Outdoor enclosures
Related Products
50km 1550 nm L-Band HTS
75 Ohm DWDM L-Band HTS
100 km+ systems

Product configurator

Popular products

HRT-L1-8R-30-DC33
ViaLiteHD RF Link, Transmitter (E/O), L Band $700-2450 \mathrm{MHz}$, 50 Ohm SMA, Singlemode SC/APC, Rack plugin module, LNA/LNB or BUC DC voltage feed to RF input or output conn' supplied from rear chassis SCSI conn' or OEM header conn', -5dB RF Gain, DFB 5mW DWDM, 10km+, ITU 100GHz grid, Channel C33, 1550.91 nm .

HRR-L1-8R-03
ViaLiteHD RF Link, Receiver (O/E), L Band $700-2450 \mathrm{MHz}$, 50 Ohm SMA, Singlemode SC/APC, Rack plug-in module, No LNA Feed, 20dB RF Gain.

RF parameters for popular link gains

Link				Link Noise Figure (Default Tx Gain)	Link Noise Figure (Max Tx Gain)	Link P1dB (Default Tx Gain)
HRT-L1-xx-x0-DC33 \& HRR-L1-xx-x3 (Low noise 15dB Gain Link)	-5 dB	+20 dB	14 dB	9 dB	Link P1dB (Max Gain)	
HRT-L1-xx-x5-DC33 \& HRR-L1-xx-x5 (Unity Gain Link)	-15 dB	+15 dB	24 dB	12.5 dB	+8.5 dBm	
HRT-L1-xx-x6-DC33 \& HRR-L1-xx-x6 (High P1dB Unity Gain Link)	-25 dB	+25 dB	34 dB	29 dB	-3 dBm	

Technical specification

	Units		50 Ohm DWDM L-Band HTS
Transmitter			HRT-L1-8R-30-DC33 (example)
Receiver			HRR-L1-8R-03 (example)
Frequency range	MHz		700-2450
Impedance, RF connector			50Ω SMA, blind mate
VSWR	(typ)		1:1.5
Link gain (Tx gain / Rx gain), default	dB (nom)	a	$15(-5 /+20)$
Tx gain adjustment range	dB (typ)		15.5
Tx gain adjustment from default gain	dB (typ)	d	+/-3
Rx gain adjustment range	dB (typ)		15.5
Rx gain adjustment from default gain	dB (typ)	d	+/-3
Gain adjustment step size Rx and Tx	dB (typ)		0.5
Flatness, fullband, L-Band	dB (max)	an	± 1.5
Flatness, fullband, L-Band	dB (typ)	an	± 0.5
Flatness, 36 MHz , L-Band	dB (typ)	a	± 0.2
Gain stability over temperature range	dB (max)	a	± 1
Gain stability	dB (typ)		0.25 @ 24 hrs
Nominal input signal / output signal	dBm		-20 / -20
IMD @ nominal output power	dB (typ)	c	-69
CNR @ nominal input power, 36MHz	dB (typ)	b	60
P1dB input	dBm (typ)	ak	-1.5
$\mathrm{P} 1 \mathrm{~dB}_{\text {input }}$, at maximum Tx gain	dBm (typ)	ak	-6.5
IP3 input, at default gain	dBm (typ)	ak	+11.5
Noise figure, at default gain	dB (typ)	ak	14
Noise figure, at maximum Tx gain	dB (typ)	ak	9
Noise figure, 5dB optical loss	dB (typ)	ck	19.5
SFDR	$\mathrm{dB/Hz}{ }^{2 / 3}$ (typ)	a	114
Test port gain, transmitter	dB (typ)	I	-20
Test port gain, receiver	dB (typ)	I	-20
Test port flatness	dB (typ)	I	± 1
Maximum input power without damage	dBm		15
LNB power			Internal 13/18/22 V @ 700 mA with switchable tone
Power Consumption Tx	W (typ)		3.5, excluding LNA power
Power Consumption Rx	W (typ)		1.3
Optical connector			SC/APC, blindmate
Optical wavelength	nm		1550.12 ± 0.16
Laser type			DFB (Distributed feedback), thermo-electric cooled laser
Optical power output	dBm (typ)		7
Summary alarm output			Open drain alarm: OPEN: Alarm, CURRENT SINK: okay
Operating temperature range		e	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Storage temperature range			$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Humidity	RH		95\% non-condensing humidity

a Nominal input power @ 0 dB optical loss
b Nominal input power @ 1 dB optical loss
c Nominal output power @ 5 dB optical loss
e Datasheet parameters based on temperature range $-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$, refer to user manual for performance parameters @ $-20^{\circ} \mathrm{C}$ and $+60^{\circ} \mathrm{C}$

${ }^{n}$ Default gain setting
k Measured @ 1.2 GHz
l Relative to rear port @1.2 GHz
d Guaranteed minimum adjustment from default gain

24/9 Powells Road, Brookvale, NSW 2100, Australia +6129939 4377 sales@stepelectronics.com.au

Accessories

Type	Key Features
SNMP/Web Browser Card Viailte	- Easy to use graphical user interface (GUI) - Real time monitoring of card performance - Alarm monitoring and event logging - Control of gain adjustment - Compatible with all ViaLiteHD rack chassis and modules - Easy integration with network management systems (NMS) using management information base (MIB) tables - Actively manage redundancy switching - New RF cards can be automatically reprogrammed with the previous card parameters - Remote SNMP to local SNMP connection via optical fiber - Provides remote LAN 10/100 Ethernet link
Dual Redundancy	- 1:1 redundancy for L-Band - Maximises link up-time - Can be used to backup copper coax - Manual and automatic control via SNMP - Flexible configuration options - Other options available
Rack Chassis	- 3U accepts up to 13 RF or Support cards, plus an SNMP card and dual power supplies - A 1 U chassis accepts up to 3 RF or Support cards or 2 cards and an SNMP card (with dual power supplies) - Up to 26 channels per 3 U chassis (using dual RF cards) reducing the amount of rack space required - Blind mate option - All modules hot-swappable and auto-reconfiguration with SNMP option - On-card LNB and BUC power options - Power fed through rear chassis connector to card Bias Tees - System can be monitored and controlled remotely via SNMP using a web browser
DWDM Systems	- DWDM multiplexers - EDFAs - Delay lines - Optical switches - Dispersion Compensation - System design and configuration - Remote link monitoring

24/9 Powells Road, Brookvale, NSW 2100, Australia +6129939 4377 sales@stepelectronics.com.au

